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Abstract—The problem of output feedback H∞ control for a
class of constrained linear systems is studied in this paper. A
sufficient condition for the existence of the H∞ output feedback
controllers is proposed. Furthermore, the solution scheme is
formulated in terms of linear matrix inequalities (LMIs). Finally,
an aircraft model and a quarter car active suspension model are
exploited to illustrate the effectiveness of the proposed method.

I. INTRODUCTION

The analysis and design of systems that are subject to
various types of uncertainties or perturbations had always
been one of the main concerns of control engineers. Feed-
back control is a powerful tool to deal with uncertainties.
Control engineers and scholars have been trying to find out
the ideal design method to guarantee the system robustness
through feedback control since the 1930s. Of all kinds of
robust control methods, H∞ control theory is an important
branch [1][2].

H∞ control theory was initially proposed by Zames [3] in
the early 1980s, which attempted to minimize the H∞ norm
of the transfer function in order to restrain disturbances to
the greatest extent. The H∞ norm was found to be appro-
priate for specifying both the level of plant uncertainty and
the signal gain from disturbance inputs to error outputs in
the controlled systems [4] . Here is the main idea of the
H∞ control : For a set of finite energy disturbance signals,
design a controller to ensure that the closed-loop system
is stable and the disturbance has minimal impact on the
desired output simultaneously.

Finding an optimal H∞ controller is often both numeri-
cally and theoretically complicated, as shown in [5]. The
emergence and development of state space H∞ control
theory makes the design of H∞ controller much easier.
State space H∞ control can be divided into three categories
in terms of structure: H∞ state feedback control, H∞
output-feedback control and H∞ state feedback control
based on state-estimator. H∞ state feedback control is
investigated in [6],[7]. Since not all the states are available
in practice, observer-based H∞ controller and H∞ output
feedback controller are widely discussed. Observer-based
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H∞ controller of networked nonlinear systems is proposed
in [8],[9], where sufficient conditions for the existence of an
observer-based feedback controller are derived. Robust H∞
output feedback controller is investgated in [10], where the
proposed schemes are related to linear matrix inequality
(LMI) optimization. The problem of H∞ output feed-
back control of commensurate Fractional Order Systems
is addressed in [11], where an extension of Bounded Real
Lemma is used. In these papers, LMIs are efficient ways to
express H∞ output feedback control problems, which offer
better flexibility than analytical methods. In order to take
unavailable variables into consideration and simplify the
controller design, this paper choose H∞ output feedback
control for linear time invariant systems. As a matter of
fact, most industrial systems must operate within fixed
bounds and are subject to strict control limitations [12].
Thus, the input constraints and output constraints of the
linear system are taken into account in this paper, which is
also the characteristics of this article. In general, a problem
of output feedback H∞ control for a class of constrained
systems is considered. Furthermore, a sufficient condition
for the existence of H∞ performance output feedback con-
trollers is derived via the linear matrix inequality approach,
and a design procedure is provided.

The rest of this paper is outlined as follows. First of all,
the general H∞ control problem of linear time invariant
(LTI) system is setup in Section II. Next, both the output
feedback law and solution scheme is discussed in Section
III. In Section IV, examples are presented to illustrate
the effectiveness of the suggested approach. Finally, some
conclusions are drawn.

II. PROBLEM SETUP

Consider the following linear time invariant (LTI) system

ẋ(t ) = Ax(t )+B1w(t )+B2u(t ), (1a)

z1(t ) =C1x(t )+D11w(t )+D12u(t ), (1b)

z2(t ) =C2x(t )+D21w(t )+D22u(t ), (1c)

y(t ) =C3x(t )+D31w(t ). (1d)
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subject to output constraints

|z2i (t )| ≤ z2i ,max , i = 1,2, · · · ,nz2, t ≥ 0, (2)

where x ∈ Rnx is the state, w ∈ Rnw the persistent exogenous
disturbance or uncertainty, u ∈ Rnu the control input, z1 ∈
Rnz1 the control output, z2 ∈ Rnz2 the constraint output,
and y ∈ Rny is the measurement output. It is assumed that
D21 = 0 and D31 = 0, i.e., disturbance has no direct way to
affect the constraint outputs and the measurement outputs.
Some fundamental assumptions are stated in the following:

Assumption 1: The triple (A,B2,C3) is stabilizable and
observable.

Assumption 2: The signal w ∈ Rnw is unknown but en-
ergy bounded, and lies in a compact set,

W :=
{

w ∈Rnw |
∫ ∞

0
∥w(τ)∥2

2dτ≤ wmax

}
, (3)

i.e., w ∈W for all t ≥ 0.
Remark 2.1: If z2 = u is chosen, the input constraint is

considered in this setup.
In this paper, the dynamic output feedback control law

K is considered,

ξ̇(t ) = Aξξ(t )+Bξy(t ), (4a)

u(t ) =Cξξ(t )+Dξy(t ). (4b)

where ξ ∈ Rnk is the state of controller and nξ is the dimen-
sion of controller. Aξ, Bξ, Cξ and Dξ are constant matrices
of appropriate dimensions which need to be determined.
Applying this output feedback controller (4) to the plant (1)
will present the closed-loop system

ẋcl (t ) = Acl xcl (t )+Bcl w(t ), (5a)

z1(t ) =Ccl ,1xcl (t )+Dcl ,1w(t ), (5b)

z2(t ) =Ccl ,2xcl (t )+Dcl ,2w(t ), (5c)

where xcl =
[

x
ξ

]
, Acl =

[
A+B2DξC3 B2Cξ

BξC3 Aξ

]
,

Bcl =
[

B1 +B2DξD31

BξD31

]
, Ccl ,1 =

[
C1 +D12DξC3

D12Cξ

]T

,

Dcl ,1 = [
D11 +D12DξD31

]
, Ccl ,2 = [

C2 +D22DξC3 D22Cξ

]
,

Dcl ,2 =
[
D21 +D22DξD31

]
.

Our objective is to design a dynamic output feedback
controller of the form (4) such that the closed-loop system
is internally stable, the H∞ performance from the distur-
bance w to the performance output z1 is minimized, and
the output constraints z2 are satisfied.

III. OUTPUT FEEDBACK H∞ CONTROL

In Section II, an H∞ output feedback control problem of
the general constraint LTI system was setup. In this section,
H∞ output feedback control law is proposed as well as the
corresponding proof procedure first. Then solution scheme
is provided. The H∞ output feedback controller for a
constraint LTI system can be designed according to it.

A. Output Feedback Law

For a given scalar γ> 0 , the H∞ performance from w(t )
to z1(t ) is less than γ, if there exists a matrix such that
Xcl = X T

cl > 0 satisfying the following LMI [13]AT
cl Xcl +Xcl Acl Xcl Bcl C T

cl ,1
∗ −γI DT

cl ,1
∗ ∗ −γI

≤ 0, (6)

where ∗ represents the transpose of the corresponding
element.

Denote V (xcl ) := xT
cl Xcl xcl . The feasibility of (6) guaran-

tees that for the closed-loop system (5) [14]

d

d t
V (xcl (t ))+∥z1(t )∥2 −γ2∥w(t )∥2 ≤ 0. (7)

Integrating (7) from time instant 0 to t ≥ 0, it is achieved
that

V (xcl (t ))+
∫ t

0
∥z1(τ)∥2dτ≤γ2

∫ t

0
∥w(τ)∥2dτ+V (xcl (0)). (8)

In terms of w ∈W , (8) implies that the state trajectory stays
in the ellipsoid

Ω(Xcl ,α) :=
{

xcl ∈ Rnx |V (xcl ) ≤α,

α := γ2wmax +V (xcl (0))
}

.
(9)

That is, the ellipsoid Ω(Xcl ,α) contains the set of reach-
able states of the closed-loop system. The next lemma is to
guarantee the constraint satisfaction.

Lemma 1: Suppose that there exists a symmetric positive
definite matrix Xcl such that the matrix inequality (6) holds
for all admissible disturbance, and Xcl ∈Ω(Xcl ,α). If[ 1

α Z Ccl ,2

C T
cl ,2 Xcl

]
≥ 0, (10)

then the output feedback control law K guarantees the
satisfaction of the constraint (2), where Zi i ≤ z2

2i ,max , for
i = 1,2, · · · ,nz2.
Proof: According to Cauchy-Schwarz inequality [15], it fol-
lows:

max
t≥0

|zi (t )|2 = max
t≥0

|C2i xcl (t )|2

≤ max
x∈Ω

|C2i xcl (t )|2

= max
x∈Ω

|C2i X
− 1

2
cl X

1
2

cl xcl (t )|2

≤ ∥(C2X
− 1

2
cl )i∥2

2 · ∥X
1
2

cl xcl∥2
2

≤α(C2X −1
cl C T

2 )i i ,

where the fifth inequality is due to Xcl ∈Ω(Xcl ,α). In terms
of the Schur Complement Theorem [16], the inequality (10)
is equivalent to

α(C2 X −1
cl C T

2 )i i ≤ max
t≥0

|zi (t )|2 = z2
2i ,max

�



B. Solution Scheme

In the sequel, a method named changing variables [17]
is used to reformulate (6) and (10) as LMIs. Partition Xcl

and X −1
cl as

Xcl =
[

Y N
N T ∗

]
, X −1

cl =
[

X M
M T ∗

]
, (11)

where ∗ represents that the block is arbitrary, both X and
Y are symmetric and of the same size as A. In terms of

Xcl X −1
cl = I , Xcl

[
X

M T

]
=

[
I
0

]
is infered, which leads to

XclΠ1 =Π2

with Π1 =
[

X I
M T 0

]
, Π2 =

[
I Y
0 N T

]
.

Let us define the changes of controller variables as
follows,

Â := N AξM T +N BξC3X +Y B2CξM T

+Y (A+B2DξC3)X
, (12a)

B̂ := N Bξ+Y B2Dξ, (12b)

Ĉ :=CξM T +DξC3X , (12c)

D̂ := Dξ. (12d)

Suppose that M and N have full row rank, and if Â, B̂ ,Ĉ ,D̂
and X ,Y are given, controller matrices Aξ, Bξ, Cξ and Dξ

can be derived such that (12) is satisfied. Furhermore, if M
and N are square and invertible, then Aξ,Bξ,Cξ and Dξ are
unique [2]. For the full order design, one can always assume
that M and N have full row rank. Hence the variables
Aξ,Bξ,Cξ,Dξ can be replaced by Â, B̂ ,Ĉ ,D̂ without loss of
generality.

If both a congruence transformation with di ag (Π1, I , I )
on (6) and a congruence transformation with di ag (I ,Π1)
on (10) are performed, the following inequalities can be
achieved

S0 S1 B1 (C1X +D12Ĉ )T

⋆ S2 Y B1 (C1 X +D12D̂C2)T

⋆ ⋆ −I (D11 +D12D̂D31)T

⋆ ⋆ ⋆ −γ2I

≤ 0 (13)

and  1
α Z M0 M1

⋆ X I
⋆ ⋆ Y

> 0 with Zi i ≤ z2
2i ,max , (14)

where ⋆ replaces blocks that are readily inferred by sym-
metry, S0 = AX +X AT +B2Ĉ + (B2Ĉ )T , S1 = ÂT + A+B2D̂C3,
S2 = AT Y + Y A + B̂C2 + (B̂C2)T , M0 = C2X + D22Ĉ , M1 =
C2 +D22D̂C3.

Clearly, the above inequalities are LMIs in X ,Y , and
(Â, B̂ ,Ĉ ,D̂) for a fixed α. The semi-definite programming

min
X>0,Y >0,Â,B̂ ,Ĉ ,D̂

γ s.t . LMIs (13), (14) (15)

is convex and numerically tractable. Now, it is the place to
state the main result of this paper.

Theorem 1: Suppose that there exists an optimal solution
X ,Y , and (Â, B̂ ,Ĉ ,D̂) to (15). then, the output feedback
controller (4) guarantees

1) a disturbance attenuation level γ∗ for all energy
bounded disturbances;

2) satisfaction of the time-domain hard constraints (2), if
the disturbance energy satisfies (3).

Proof: 1). The existence of matrices X > 0,Y > 0, and
Â, B̂ ,Ĉ ,D̂ satisfying LMI (13) guarantees the dissipation
inequality (7). Suppose that x(0) = 0, then (7) is sufficient
for

∥z1∥
∥w∥ ≤ γ∗

2). Moreover, if the disturbance energy satisfies (3), then
the closed-loop trajectory is contained in Ω(Xcl ,α). This in
turn guarantees that the feasibility of LMIs (14) implies the
satisfaction of the hard constraints. �

Remark 3.1: Since (A,B) is stabilizable, an α > 0 can be
found such that the LMI optimization problem is feasi-
ble [17].

Suppose that the LMI optimization problem has an op-
timal solution (γ∗, X ∗,Y ∗, Â∗, B̂∗,Ĉ∗,D̂∗), the construction
proceeds of the controllers as follows: find nonsingular
matrices M and N to satisfy M N T = I − X Y and define
the controller by [14]

D∗
ξ := D̂ , (16a)

C∗
ξ := (Ĉ∗−DξC3X )M−T , (16b)

B∗
ξ := N−1(B̂∗−Y B2Dξ), (16c)

A∗
ξ := N−1(Â∗−N BξC3X −Y B2CξM T

−Y AX −Y B2DξC3X )M−T .
(16d)

IV. SIMULATION

In this section, two design examples are presented to
illustrate the effectiveness of the proposed controller design
method. A relatively simple example is considered in the
first simulation, which is about the lateral direction control
of an aircraft. In the second simulation, the active suspen-
sion based on a quarter-car is fully discussed. For compar-
ison, the H∞ /generalized H2 control method introduced
in [14] is also employed to demonstrate the effectiveness of
the proposed method.

A. Application to Flight Control

This example is taken from the linearized small perturba-
tion model of an aircraft [18], its lateral direction state equa-
tion is described in the form of (1), where x = [β ωx ωz γ],
β is sideslip angle, ωx is roll angular velocity, ωz is yaw
rate and γ is roll angle, u = [δa δz ], which stand for aileron



angle and rudder angle. Parameter matrices are written as
follow:

A =


−0.2289 0.0555 0.9933 0.2519
−45.3705 −19.6189 −11.144 0
−4.6579 0.3565 −0.6407 0

0 1 −0.0566 0

 ,

B1 =
[−0.2289 −45.3705 −4.6579 0

]
,

B2 =
[−0.0215 −49.2930 2.9839 0
−0.0727 −4.1173 −6.2686 0

]
,

C1 =
[

1 0 0 0
0 0 0 1

]
,C2 =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,D12 =


0 0
0 0
1 0
0 1

 ,

D11,D21,D22,D31 are zero matrices with appropriate dimen-
sions. Initial state condition is x0 = [5 0 0 0]. The additional
force caused by air disturbance can be described as

ω(t ) =
{

0.2 , 1s ≤ t ≤ 2s

0 , other wi se
(17)

The H∞ output feedback controller is obtained as pro-
posed scheme. The simulation results are shown in Figure 1,
where H∞ /generalized H2 control is given as a comparison
[c.f.[14]]. The achieved H∞ performance of the methods are
0.1707 and 0.1802, respectively. The simulation results show
that the proposed controller effectively reduces the sideslip
angle and yaw angle in yaw and roll flight condition, and
can resist the influence of air disturbances.
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Figure 1: Air disturbance responses : output feedback H∞
control (-), output feedback H∞ /generalized H2 (...) ,
without any controller (-.-)

B. Application to 1/4 Active Suspensions

1) 2-DOF Quarter-Car Model and Control Problem
Formation: 2-DOF quarter-car models are widely used in
suspension analysis and design, because they capture major
characteristics of a real suspension system. A generalized
quarter-car suspension model is shown in Figure 2, where

ms and mu stand for the sprung mass and unsprung mass;
ks and cs are stiffness and damping of the suspension
system, respectively. In addition, (ks ,cs ) consists of the so-
called passive suspension; ku represents the tire stiffness;
xs − xu denotes the suspension stroke and xg is vertical
ground displacement caused by road unevenness. More-
over, u f is the active control force provided by a hydraulic
actuator. The model parameters are given in Table 1 for
the controller design. Based on this suspension model, the
linearized dynamic equations of the sprung and unsprung
mass can be established [6]:

ms ẍs +ks (xs −xu)+ xs (ẋs − ẋs ) = u f (18a)

mu ẍs −ks (xs −xu)−xs (ẋs − ẋs )+ku(xu − xg ) = u f (18b)

Figure 2: Quarter-car model

Define a set of state variables x1 = xs − xu , x2 = ẋs , x3 =
xu −xg , x4 = ẋu , the state description of the car motion can
be obtained as

ẋ(t ) =


0 1 0 −1

− ks
ms

− cs
ms

0 cs
ms

0 0 0 −1
ks

mu

cs
mu

− ku
mu

− cs
mu

x(t )

+


0
0
−1
0

w(t )+


0
us
ms

0
− us

mu

u(t ) ,

(19)

where w = ẋg denotes the disturbance input caused by road
roughness, us is the maximum active force and u = u f /us

is the normoalized active force.
The ride comfort is the most basic concerning in the

design of a suspension system which is quantified by the
body acceleration in the vertical direction. It is reasonable
to choose the H∞ norm as performance measure, since the
value of H∞ norm actually generates an upper bound on
the root mean square (RMS) gain [6]. The body acceleration
ẍs is chosen as the performance output in the form of

z1(t ) =
[
− ks

ms
− cs

ms
0 cs

ms

]
x(t )+ us

ms
u(t ) (20)

In addition, road holding, which has influence on vehicle
handling stability, is another key suspension performance.



Table I: Parameters in a Quarter Car Model

Model parameters Values

sprung mass (ms ) 320kg
suspension stiffness (ks ) 18kN/m

suspension damping rate (cs ) 1kN · s ·m−1

unsprung mass (mu ) 40kg
tire stiffness (ku ) 200kN/m

maximum active force (us ) 1000N
maximum suspension deflection (Smax ) 0.08m

In order to ensure a firm uninterrupted contact of wheels
to road, the dynamic tire load should not exceed the static
tire load

ku(xu(t )−xg (t )) < (ms +mu)g . (21)

Due to the mechanical structure, the suspension stroke
limitation as follows should be considered so that the
suspension stoke will not exceed the allowable maximum

| xs (t )−xu(t ) |≤ Smax , (22)

where Smax is the maximum suspension deflection. More-
over, the actuator saturation should be taken into account,
thus the normalized active control force is bounded

| u(t ) |≤ 1. (23)

Given the above discussions, suspension stroke xs − xu ,

relative dynamic tire load
ku (xu−xg )
(ms+mu )g and active force u can

be chosen as the constraint output z2(t ),

z2(t ) =


xs−xu
Smax

ku (xu−xg )
(ms+mu )g

u



=


1

Smax
0 0 0

0 0 ku
(ms+mu )g 0

0 0 0 0

x(t )+
0

0
1

u(t ).

(24)

In summary, the objective is to find an internally stabi-
lizing linear dynamic output feedback controller (4) such
that:

1) The performance output z1(t ) is minimized in order to
improve the ride comfort;

2) The absolute value of each element of the constraint
output z2(t ) is less than one so as to satisfy the
corresponding time-domain hard constraints.

2) Response to Disturbances: To evaluate the effective-
ness of the designed controller, a case of an isolated bump
in an otherwise smooth road surface is considered. The
corresponding ground displacement is given by

A

2

(
1−cos

2πv

L
t

)
, 0 ≤ t ≤ L

v (25)

where A and L are the height and length of the bump
respectively. As there are different road roughness, C Grade
(average) road surface with G0 = 128×10−6m3 is considered,
where G0 stands for the road roughness coefficient. The

disturbance energy of this bump can be described by the
following ground velocity :

ẋg (t )=
{

N (0,2πn0
p

G0v)+ πv A
L sin( 2πv

L t ), 0≤ t ≤ L
v

N (0,2πn0
p

G0v), t > L
v

(26)

where n0 denotes the spatial frequency and n0 = 0.1m−1 is
the reference spatial frequency. Choose A = 0.1m, L = 5m,
and the vehicle forward velocity as v = 12.5m/s (= 45km/h),
c.f. Figure 3. The output feedback controller (4) is obtained
by solving the optimization problem (15). The achieved
H∞ performance is γ∗ = 9.8696, which implies the anti-
interference performance of the active suspension. Figure
4 demonstrates the responses of ground velocity, vertical
accelerations, suspension strokes, relative dynamic tire load
and active force for the passive and active suspensions
system. In order to evaluate the performance of the de-
signed controller, a H∞ /generalized H2 output feedback
controller (cf.[14]) is proposed here as a comparison. The
achieved H∞ performance H∞ /generalized H2 output
feedback is 10.3825. The results of the simulation show
that the system with H∞ output feedback controller has
better performance than H∞ /generalized H2 output feed-
back control. Both the active suspensions have improved
ride comfort and relative dynamic tire load significantly
compared to the passive suspension, while the suspension
stroke and actuator force are under its prespecified bounds.

V. SUMMARY

An output feedback H∞ control for constrained LTI
systems has been investigated in this paper. A sufficient
condition for the existence of guaranteed H∞ performance
output feedback controllers is derived via the linear matrix
inequality approach. The H∞ output feedback controller
can be easily obtained according to the solution of a convex
optimization problem. The lateral direction control of an
aircraft and active suspension control problem were shown
in order to demonstrate its effectiveness. Results both of the
two simulations showed that the proposed method could
effectively restrain disturbance to some extent.
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